AMP does not induce torpor.

نویسندگان

  • Steven J Swoap
  • Meaghan Rathvon
  • Margaret Gutilla
چکیده

Torpor, a state characterized by a well-orchestrated reduction of metabolic rate and body temperature (T(b)), is employed for energetic savings by organisms throughout the animal kingdom. The nucleotide AMP has recently been purported to be a primary regulator of torpor in mice, as circulating AMP is elevated in the fasted state, and administration of AMP causes severe hypothermia. However, we have found that the characteristics and parameters of the hypothermia induced by AMP were dissimilar to those of fasting-induced torpor bouts in mice. Although administration of AMP induced hypothermia (minimum T(b) = 25.2 +/- 0.6 degrees C) similar to the depth of fasting-induced torpor (24.9 +/- 1.5 degrees C), ADP and ATP were equally effective in lowering T(b) (minimum T(b): 24.8 +/- 0.9 degrees C and 24.0 +/- 0.5 degrees C, respectively). The maximum rate of T(b) fall into hypothermia was significantly faster with injection of adenine nucleotides (AMP: -0.24 +/- 0.03; ADP: -0.24 +/- 0.02; ATP: -0.25 +/- 0.03 degrees C/min) than during fasting-induced torpor (-0.13 +/- 0.02 degrees C/min). Heart rate decreased from 755 +/- 15 to 268 +/- 17 beats per minute (bpm) within 1 min of AMP administration, unlike that observed during torpor (from 646 +/- 21 to 294 +/- 19 bpm over 35 min). Finally, the hypothermic effect of AMP was blunted with preadministration of an adenosine receptor blocker, suggesting that AMP action on T(b) is mediated via the adenosine receptor. These data suggest that injection of adenine nucleotides into mice induces a reversible hypothermic state that is unrelated to fasting-induced torpor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction of a Torpor-Like State by 5’-AMP Does Not Depend on H2S Production

BACKGROUND Therapeutic hypothermia is used to reduce ischemia/reperfusion injury (IRI) during organ transplantation and major surgery, but does not fully prevent organ injury. Interestingly, hibernating animals undergo repetitive periods of low body temperature called 'torpor' without signs of organ injury. Recently, we identified an essential role of hydrogen sulfide (H2S) in entrance into tor...

متن کامل

Pyruvate induces torpor in obese mice.

Mice subjected to cold or caloric deprivation can reduce body temperature and metabolic rate and enter a state of torpor. Here we show that administration of pyruvate, an energy-rich metabolic intermediate, can induce torpor in mice with diet-induced or genetic obesity. This is associated with marked hypothermia, decreased activity, and decreased metabolic rate. The drop in body temperature cor...

متن کامل

Leptin: the "skinny" on torpor.

OUTSIDE OF THE TROPICS, winter can pose a significant threat to survival because food availability wanes as the ambient temperatures decrease and energy requirements for thermoregulation increase. Many animals cope with this seasonal energetic shortfall by engaging multiple winter adaptations to conserve energy, including cessation of reproduction and territorial defense, changes in body mass, ...

متن کامل

Torpor and hypothermia: reversed hysteresis of metabolic rate and body temperature.

Regulated torpor and unregulated hypothermia are both characterized by substantially reduced body temperature (Tb) and metabolic rate (MR), but they differ physiologically. Although the remarkable, medically interesting adaptations accompanying torpor (e.g., tolerance for cold and ischemia, absence of reperfusion injury, and disuse atrophy) often do not apply to hypothermia in homeothermic spec...

متن کامل

Norepinephrine Controls Both Torpor Initiation and Emergence via Distinct Mechanisms in the Mouse

Some mammals, including laboratory mice, enter torpor in response to food deprivation, and leptin can attenuate these bouts of torpor. We previously showed that dopamine beta-hydroxylase knockout (Dbh -/-) mice, which lack norepinephrine (NE), do not reduce circulating leptin upon fasting nor do they enter torpor. To test whether the onset of torpor in mice during a fast requires a NE-mediated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 293 1  شماره 

صفحات  -

تاریخ انتشار 2007